direct product, metabelian, nilpotent (class 2), monomial
Aliases: C22⋊C4×C33, C63.1C2, C62⋊13C12, (C6×C12)⋊11C6, (C3×C62)⋊5C4, C6.19(C6×C12), C2.1(D4×C33), (C2×C6).37C62, C62.83(C2×C6), (C2×C62).22C6, C6.24(D4×C32), (C32×C6).85D4, C22⋊2(C32×C12), C22.2(C3×C62), C23.2(C32×C6), (C3×C62).71C22, (C3×C6×C12)⋊4C2, C2.1(C3×C6×C12), (C2×C12)⋊2(C3×C6), (C2×C6)⋊3(C3×C12), (C2×C4)⋊1(C32×C6), (C3×C6).80(C3×D4), (C3×C6).69(C2×C12), (C22×C6).19(C3×C6), (C32×C6).76(C2×C4), SmallGroup(432,513)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C22⋊C4×C33
G = < a,b,c,d,e,f | a3=b3=c3=d2=e2=f4=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, fdf-1=de=ed, ef=fe >
Subgroups: 644 in 476 conjugacy classes, 308 normal (10 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C2×C4, C23, C32, C12, C2×C6, C2×C6, C22⋊C4, C3×C6, C3×C6, C2×C12, C22×C6, C33, C3×C12, C62, C62, C3×C22⋊C4, C32×C6, C32×C6, C32×C6, C6×C12, C2×C62, C32×C12, C3×C62, C3×C62, C3×C62, C32×C22⋊C4, C3×C6×C12, C63, C22⋊C4×C33
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, C32, C12, C2×C6, C22⋊C4, C3×C6, C2×C12, C3×D4, C33, C3×C12, C62, C3×C22⋊C4, C32×C6, C6×C12, D4×C32, C32×C12, C3×C62, C32×C22⋊C4, C3×C6×C12, D4×C33, C22⋊C4×C33
(1 6 35)(2 7 36)(3 8 33)(4 5 34)(9 161 141)(10 162 142)(11 163 143)(12 164 144)(13 153 145)(14 154 146)(15 155 147)(16 156 148)(17 45 37)(18 46 38)(19 47 39)(20 48 40)(21 49 29)(22 50 30)(23 51 31)(24 52 32)(25 129 157)(26 130 158)(27 131 159)(28 132 160)(41 121 149)(42 122 150)(43 123 151)(44 124 152)(53 133 125)(54 134 126)(55 135 127)(56 136 128)(57 111 189)(58 112 190)(59 109 191)(60 110 192)(61 213 81)(62 214 82)(63 215 83)(64 216 84)(65 93 197)(66 94 198)(67 95 199)(68 96 200)(69 209 77)(70 210 78)(71 211 79)(72 212 80)(73 101 181)(74 102 182)(75 103 183)(76 104 184)(85 165 105)(86 166 106)(87 167 107)(88 168 108)(89 169 97)(90 170 98)(91 171 99)(92 172 100)(113 137 117)(114 138 118)(115 139 119)(116 140 120)(173 201 193)(174 202 194)(175 203 195)(176 204 196)(177 205 185)(178 206 186)(179 207 187)(180 208 188)
(1 127 15)(2 128 16)(3 125 13)(4 126 14)(5 54 154)(6 55 155)(7 56 156)(8 53 153)(9 21 121)(10 22 122)(11 23 123)(12 24 124)(17 117 129)(18 118 130)(19 119 131)(20 120 132)(25 37 137)(26 38 138)(27 39 139)(28 40 140)(29 41 141)(30 42 142)(31 43 143)(32 44 144)(33 133 145)(34 134 146)(35 135 147)(36 136 148)(45 113 157)(46 114 158)(47 115 159)(48 116 160)(49 149 161)(50 150 162)(51 151 163)(52 152 164)(57 69 169)(58 70 170)(59 71 171)(60 72 172)(61 73 173)(62 74 174)(63 75 175)(64 76 176)(65 165 177)(66 166 178)(67 167 179)(68 168 180)(77 89 189)(78 90 190)(79 91 191)(80 92 192)(81 181 193)(82 182 194)(83 183 195)(84 184 196)(85 185 197)(86 186 198)(87 187 199)(88 188 200)(93 105 205)(94 106 206)(95 107 207)(96 108 208)(97 111 209)(98 112 210)(99 109 211)(100 110 212)(101 201 213)(102 202 214)(103 203 215)(104 204 216)
(1 119 11)(2 120 12)(3 117 9)(4 118 10)(5 114 162)(6 115 163)(7 116 164)(8 113 161)(13 17 121)(14 18 122)(15 19 123)(16 20 124)(21 125 129)(22 126 130)(23 127 131)(24 128 132)(25 29 133)(26 30 134)(27 31 135)(28 32 136)(33 137 141)(34 138 142)(35 139 143)(36 140 144)(37 41 145)(38 42 146)(39 43 147)(40 44 148)(45 149 153)(46 150 154)(47 151 155)(48 152 156)(49 53 157)(50 54 158)(51 55 159)(52 56 160)(57 61 165)(58 62 166)(59 63 167)(60 64 168)(65 169 173)(66 170 174)(67 171 175)(68 172 176)(69 73 177)(70 74 178)(71 75 179)(72 76 180)(77 181 185)(78 182 186)(79 183 187)(80 184 188)(81 85 189)(82 86 190)(83 87 191)(84 88 192)(89 193 197)(90 194 198)(91 195 199)(92 196 200)(93 97 201)(94 98 202)(95 99 203)(96 100 204)(101 205 209)(102 206 210)(103 207 211)(104 208 212)(105 111 213)(106 112 214)(107 109 215)(108 110 216)
(2 60)(4 58)(5 112)(7 110)(10 166)(12 168)(14 170)(16 172)(18 174)(20 176)(22 178)(24 180)(26 182)(28 184)(30 186)(32 188)(34 190)(36 192)(38 194)(40 196)(42 198)(44 200)(46 202)(48 204)(50 206)(52 208)(54 210)(56 212)(62 118)(64 120)(66 122)(68 124)(70 126)(72 128)(74 130)(76 132)(78 134)(80 136)(82 138)(84 140)(86 142)(88 144)(90 146)(92 148)(94 150)(96 152)(98 154)(100 156)(102 158)(104 160)(106 162)(108 164)(114 214)(116 216)
(1 59)(2 60)(3 57)(4 58)(5 112)(6 109)(7 110)(8 111)(9 165)(10 166)(11 167)(12 168)(13 169)(14 170)(15 171)(16 172)(17 173)(18 174)(19 175)(20 176)(21 177)(22 178)(23 179)(24 180)(25 181)(26 182)(27 183)(28 184)(29 185)(30 186)(31 187)(32 188)(33 189)(34 190)(35 191)(36 192)(37 193)(38 194)(39 195)(40 196)(41 197)(42 198)(43 199)(44 200)(45 201)(46 202)(47 203)(48 204)(49 205)(50 206)(51 207)(52 208)(53 209)(54 210)(55 211)(56 212)(61 117)(62 118)(63 119)(64 120)(65 121)(66 122)(67 123)(68 124)(69 125)(70 126)(71 127)(72 128)(73 129)(74 130)(75 131)(76 132)(77 133)(78 134)(79 135)(80 136)(81 137)(82 138)(83 139)(84 140)(85 141)(86 142)(87 143)(88 144)(89 145)(90 146)(91 147)(92 148)(93 149)(94 150)(95 151)(96 152)(97 153)(98 154)(99 155)(100 156)(101 157)(102 158)(103 159)(104 160)(105 161)(106 162)(107 163)(108 164)(113 213)(114 214)(115 215)(116 216)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)(129 130 131 132)(133 134 135 136)(137 138 139 140)(141 142 143 144)(145 146 147 148)(149 150 151 152)(153 154 155 156)(157 158 159 160)(161 162 163 164)(165 166 167 168)(169 170 171 172)(173 174 175 176)(177 178 179 180)(181 182 183 184)(185 186 187 188)(189 190 191 192)(193 194 195 196)(197 198 199 200)(201 202 203 204)(205 206 207 208)(209 210 211 212)(213 214 215 216)
G:=sub<Sym(216)| (1,6,35)(2,7,36)(3,8,33)(4,5,34)(9,161,141)(10,162,142)(11,163,143)(12,164,144)(13,153,145)(14,154,146)(15,155,147)(16,156,148)(17,45,37)(18,46,38)(19,47,39)(20,48,40)(21,49,29)(22,50,30)(23,51,31)(24,52,32)(25,129,157)(26,130,158)(27,131,159)(28,132,160)(41,121,149)(42,122,150)(43,123,151)(44,124,152)(53,133,125)(54,134,126)(55,135,127)(56,136,128)(57,111,189)(58,112,190)(59,109,191)(60,110,192)(61,213,81)(62,214,82)(63,215,83)(64,216,84)(65,93,197)(66,94,198)(67,95,199)(68,96,200)(69,209,77)(70,210,78)(71,211,79)(72,212,80)(73,101,181)(74,102,182)(75,103,183)(76,104,184)(85,165,105)(86,166,106)(87,167,107)(88,168,108)(89,169,97)(90,170,98)(91,171,99)(92,172,100)(113,137,117)(114,138,118)(115,139,119)(116,140,120)(173,201,193)(174,202,194)(175,203,195)(176,204,196)(177,205,185)(178,206,186)(179,207,187)(180,208,188), (1,127,15)(2,128,16)(3,125,13)(4,126,14)(5,54,154)(6,55,155)(7,56,156)(8,53,153)(9,21,121)(10,22,122)(11,23,123)(12,24,124)(17,117,129)(18,118,130)(19,119,131)(20,120,132)(25,37,137)(26,38,138)(27,39,139)(28,40,140)(29,41,141)(30,42,142)(31,43,143)(32,44,144)(33,133,145)(34,134,146)(35,135,147)(36,136,148)(45,113,157)(46,114,158)(47,115,159)(48,116,160)(49,149,161)(50,150,162)(51,151,163)(52,152,164)(57,69,169)(58,70,170)(59,71,171)(60,72,172)(61,73,173)(62,74,174)(63,75,175)(64,76,176)(65,165,177)(66,166,178)(67,167,179)(68,168,180)(77,89,189)(78,90,190)(79,91,191)(80,92,192)(81,181,193)(82,182,194)(83,183,195)(84,184,196)(85,185,197)(86,186,198)(87,187,199)(88,188,200)(93,105,205)(94,106,206)(95,107,207)(96,108,208)(97,111,209)(98,112,210)(99,109,211)(100,110,212)(101,201,213)(102,202,214)(103,203,215)(104,204,216), (1,119,11)(2,120,12)(3,117,9)(4,118,10)(5,114,162)(6,115,163)(7,116,164)(8,113,161)(13,17,121)(14,18,122)(15,19,123)(16,20,124)(21,125,129)(22,126,130)(23,127,131)(24,128,132)(25,29,133)(26,30,134)(27,31,135)(28,32,136)(33,137,141)(34,138,142)(35,139,143)(36,140,144)(37,41,145)(38,42,146)(39,43,147)(40,44,148)(45,149,153)(46,150,154)(47,151,155)(48,152,156)(49,53,157)(50,54,158)(51,55,159)(52,56,160)(57,61,165)(58,62,166)(59,63,167)(60,64,168)(65,169,173)(66,170,174)(67,171,175)(68,172,176)(69,73,177)(70,74,178)(71,75,179)(72,76,180)(77,181,185)(78,182,186)(79,183,187)(80,184,188)(81,85,189)(82,86,190)(83,87,191)(84,88,192)(89,193,197)(90,194,198)(91,195,199)(92,196,200)(93,97,201)(94,98,202)(95,99,203)(96,100,204)(101,205,209)(102,206,210)(103,207,211)(104,208,212)(105,111,213)(106,112,214)(107,109,215)(108,110,216), (2,60)(4,58)(5,112)(7,110)(10,166)(12,168)(14,170)(16,172)(18,174)(20,176)(22,178)(24,180)(26,182)(28,184)(30,186)(32,188)(34,190)(36,192)(38,194)(40,196)(42,198)(44,200)(46,202)(48,204)(50,206)(52,208)(54,210)(56,212)(62,118)(64,120)(66,122)(68,124)(70,126)(72,128)(74,130)(76,132)(78,134)(80,136)(82,138)(84,140)(86,142)(88,144)(90,146)(92,148)(94,150)(96,152)(98,154)(100,156)(102,158)(104,160)(106,162)(108,164)(114,214)(116,216), (1,59)(2,60)(3,57)(4,58)(5,112)(6,109)(7,110)(8,111)(9,165)(10,166)(11,167)(12,168)(13,169)(14,170)(15,171)(16,172)(17,173)(18,174)(19,175)(20,176)(21,177)(22,178)(23,179)(24,180)(25,181)(26,182)(27,183)(28,184)(29,185)(30,186)(31,187)(32,188)(33,189)(34,190)(35,191)(36,192)(37,193)(38,194)(39,195)(40,196)(41,197)(42,198)(43,199)(44,200)(45,201)(46,202)(47,203)(48,204)(49,205)(50,206)(51,207)(52,208)(53,209)(54,210)(55,211)(56,212)(61,117)(62,118)(63,119)(64,120)(65,121)(66,122)(67,123)(68,124)(69,125)(70,126)(71,127)(72,128)(73,129)(74,130)(75,131)(76,132)(77,133)(78,134)(79,135)(80,136)(81,137)(82,138)(83,139)(84,140)(85,141)(86,142)(87,143)(88,144)(89,145)(90,146)(91,147)(92,148)(93,149)(94,150)(95,151)(96,152)(97,153)(98,154)(99,155)(100,156)(101,157)(102,158)(103,159)(104,160)(105,161)(106,162)(107,163)(108,164)(113,213)(114,214)(115,215)(116,216), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144)(145,146,147,148)(149,150,151,152)(153,154,155,156)(157,158,159,160)(161,162,163,164)(165,166,167,168)(169,170,171,172)(173,174,175,176)(177,178,179,180)(181,182,183,184)(185,186,187,188)(189,190,191,192)(193,194,195,196)(197,198,199,200)(201,202,203,204)(205,206,207,208)(209,210,211,212)(213,214,215,216)>;
G:=Group( (1,6,35)(2,7,36)(3,8,33)(4,5,34)(9,161,141)(10,162,142)(11,163,143)(12,164,144)(13,153,145)(14,154,146)(15,155,147)(16,156,148)(17,45,37)(18,46,38)(19,47,39)(20,48,40)(21,49,29)(22,50,30)(23,51,31)(24,52,32)(25,129,157)(26,130,158)(27,131,159)(28,132,160)(41,121,149)(42,122,150)(43,123,151)(44,124,152)(53,133,125)(54,134,126)(55,135,127)(56,136,128)(57,111,189)(58,112,190)(59,109,191)(60,110,192)(61,213,81)(62,214,82)(63,215,83)(64,216,84)(65,93,197)(66,94,198)(67,95,199)(68,96,200)(69,209,77)(70,210,78)(71,211,79)(72,212,80)(73,101,181)(74,102,182)(75,103,183)(76,104,184)(85,165,105)(86,166,106)(87,167,107)(88,168,108)(89,169,97)(90,170,98)(91,171,99)(92,172,100)(113,137,117)(114,138,118)(115,139,119)(116,140,120)(173,201,193)(174,202,194)(175,203,195)(176,204,196)(177,205,185)(178,206,186)(179,207,187)(180,208,188), (1,127,15)(2,128,16)(3,125,13)(4,126,14)(5,54,154)(6,55,155)(7,56,156)(8,53,153)(9,21,121)(10,22,122)(11,23,123)(12,24,124)(17,117,129)(18,118,130)(19,119,131)(20,120,132)(25,37,137)(26,38,138)(27,39,139)(28,40,140)(29,41,141)(30,42,142)(31,43,143)(32,44,144)(33,133,145)(34,134,146)(35,135,147)(36,136,148)(45,113,157)(46,114,158)(47,115,159)(48,116,160)(49,149,161)(50,150,162)(51,151,163)(52,152,164)(57,69,169)(58,70,170)(59,71,171)(60,72,172)(61,73,173)(62,74,174)(63,75,175)(64,76,176)(65,165,177)(66,166,178)(67,167,179)(68,168,180)(77,89,189)(78,90,190)(79,91,191)(80,92,192)(81,181,193)(82,182,194)(83,183,195)(84,184,196)(85,185,197)(86,186,198)(87,187,199)(88,188,200)(93,105,205)(94,106,206)(95,107,207)(96,108,208)(97,111,209)(98,112,210)(99,109,211)(100,110,212)(101,201,213)(102,202,214)(103,203,215)(104,204,216), (1,119,11)(2,120,12)(3,117,9)(4,118,10)(5,114,162)(6,115,163)(7,116,164)(8,113,161)(13,17,121)(14,18,122)(15,19,123)(16,20,124)(21,125,129)(22,126,130)(23,127,131)(24,128,132)(25,29,133)(26,30,134)(27,31,135)(28,32,136)(33,137,141)(34,138,142)(35,139,143)(36,140,144)(37,41,145)(38,42,146)(39,43,147)(40,44,148)(45,149,153)(46,150,154)(47,151,155)(48,152,156)(49,53,157)(50,54,158)(51,55,159)(52,56,160)(57,61,165)(58,62,166)(59,63,167)(60,64,168)(65,169,173)(66,170,174)(67,171,175)(68,172,176)(69,73,177)(70,74,178)(71,75,179)(72,76,180)(77,181,185)(78,182,186)(79,183,187)(80,184,188)(81,85,189)(82,86,190)(83,87,191)(84,88,192)(89,193,197)(90,194,198)(91,195,199)(92,196,200)(93,97,201)(94,98,202)(95,99,203)(96,100,204)(101,205,209)(102,206,210)(103,207,211)(104,208,212)(105,111,213)(106,112,214)(107,109,215)(108,110,216), (2,60)(4,58)(5,112)(7,110)(10,166)(12,168)(14,170)(16,172)(18,174)(20,176)(22,178)(24,180)(26,182)(28,184)(30,186)(32,188)(34,190)(36,192)(38,194)(40,196)(42,198)(44,200)(46,202)(48,204)(50,206)(52,208)(54,210)(56,212)(62,118)(64,120)(66,122)(68,124)(70,126)(72,128)(74,130)(76,132)(78,134)(80,136)(82,138)(84,140)(86,142)(88,144)(90,146)(92,148)(94,150)(96,152)(98,154)(100,156)(102,158)(104,160)(106,162)(108,164)(114,214)(116,216), (1,59)(2,60)(3,57)(4,58)(5,112)(6,109)(7,110)(8,111)(9,165)(10,166)(11,167)(12,168)(13,169)(14,170)(15,171)(16,172)(17,173)(18,174)(19,175)(20,176)(21,177)(22,178)(23,179)(24,180)(25,181)(26,182)(27,183)(28,184)(29,185)(30,186)(31,187)(32,188)(33,189)(34,190)(35,191)(36,192)(37,193)(38,194)(39,195)(40,196)(41,197)(42,198)(43,199)(44,200)(45,201)(46,202)(47,203)(48,204)(49,205)(50,206)(51,207)(52,208)(53,209)(54,210)(55,211)(56,212)(61,117)(62,118)(63,119)(64,120)(65,121)(66,122)(67,123)(68,124)(69,125)(70,126)(71,127)(72,128)(73,129)(74,130)(75,131)(76,132)(77,133)(78,134)(79,135)(80,136)(81,137)(82,138)(83,139)(84,140)(85,141)(86,142)(87,143)(88,144)(89,145)(90,146)(91,147)(92,148)(93,149)(94,150)(95,151)(96,152)(97,153)(98,154)(99,155)(100,156)(101,157)(102,158)(103,159)(104,160)(105,161)(106,162)(107,163)(108,164)(113,213)(114,214)(115,215)(116,216), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128)(129,130,131,132)(133,134,135,136)(137,138,139,140)(141,142,143,144)(145,146,147,148)(149,150,151,152)(153,154,155,156)(157,158,159,160)(161,162,163,164)(165,166,167,168)(169,170,171,172)(173,174,175,176)(177,178,179,180)(181,182,183,184)(185,186,187,188)(189,190,191,192)(193,194,195,196)(197,198,199,200)(201,202,203,204)(205,206,207,208)(209,210,211,212)(213,214,215,216) );
G=PermutationGroup([[(1,6,35),(2,7,36),(3,8,33),(4,5,34),(9,161,141),(10,162,142),(11,163,143),(12,164,144),(13,153,145),(14,154,146),(15,155,147),(16,156,148),(17,45,37),(18,46,38),(19,47,39),(20,48,40),(21,49,29),(22,50,30),(23,51,31),(24,52,32),(25,129,157),(26,130,158),(27,131,159),(28,132,160),(41,121,149),(42,122,150),(43,123,151),(44,124,152),(53,133,125),(54,134,126),(55,135,127),(56,136,128),(57,111,189),(58,112,190),(59,109,191),(60,110,192),(61,213,81),(62,214,82),(63,215,83),(64,216,84),(65,93,197),(66,94,198),(67,95,199),(68,96,200),(69,209,77),(70,210,78),(71,211,79),(72,212,80),(73,101,181),(74,102,182),(75,103,183),(76,104,184),(85,165,105),(86,166,106),(87,167,107),(88,168,108),(89,169,97),(90,170,98),(91,171,99),(92,172,100),(113,137,117),(114,138,118),(115,139,119),(116,140,120),(173,201,193),(174,202,194),(175,203,195),(176,204,196),(177,205,185),(178,206,186),(179,207,187),(180,208,188)], [(1,127,15),(2,128,16),(3,125,13),(4,126,14),(5,54,154),(6,55,155),(7,56,156),(8,53,153),(9,21,121),(10,22,122),(11,23,123),(12,24,124),(17,117,129),(18,118,130),(19,119,131),(20,120,132),(25,37,137),(26,38,138),(27,39,139),(28,40,140),(29,41,141),(30,42,142),(31,43,143),(32,44,144),(33,133,145),(34,134,146),(35,135,147),(36,136,148),(45,113,157),(46,114,158),(47,115,159),(48,116,160),(49,149,161),(50,150,162),(51,151,163),(52,152,164),(57,69,169),(58,70,170),(59,71,171),(60,72,172),(61,73,173),(62,74,174),(63,75,175),(64,76,176),(65,165,177),(66,166,178),(67,167,179),(68,168,180),(77,89,189),(78,90,190),(79,91,191),(80,92,192),(81,181,193),(82,182,194),(83,183,195),(84,184,196),(85,185,197),(86,186,198),(87,187,199),(88,188,200),(93,105,205),(94,106,206),(95,107,207),(96,108,208),(97,111,209),(98,112,210),(99,109,211),(100,110,212),(101,201,213),(102,202,214),(103,203,215),(104,204,216)], [(1,119,11),(2,120,12),(3,117,9),(4,118,10),(5,114,162),(6,115,163),(7,116,164),(8,113,161),(13,17,121),(14,18,122),(15,19,123),(16,20,124),(21,125,129),(22,126,130),(23,127,131),(24,128,132),(25,29,133),(26,30,134),(27,31,135),(28,32,136),(33,137,141),(34,138,142),(35,139,143),(36,140,144),(37,41,145),(38,42,146),(39,43,147),(40,44,148),(45,149,153),(46,150,154),(47,151,155),(48,152,156),(49,53,157),(50,54,158),(51,55,159),(52,56,160),(57,61,165),(58,62,166),(59,63,167),(60,64,168),(65,169,173),(66,170,174),(67,171,175),(68,172,176),(69,73,177),(70,74,178),(71,75,179),(72,76,180),(77,181,185),(78,182,186),(79,183,187),(80,184,188),(81,85,189),(82,86,190),(83,87,191),(84,88,192),(89,193,197),(90,194,198),(91,195,199),(92,196,200),(93,97,201),(94,98,202),(95,99,203),(96,100,204),(101,205,209),(102,206,210),(103,207,211),(104,208,212),(105,111,213),(106,112,214),(107,109,215),(108,110,216)], [(2,60),(4,58),(5,112),(7,110),(10,166),(12,168),(14,170),(16,172),(18,174),(20,176),(22,178),(24,180),(26,182),(28,184),(30,186),(32,188),(34,190),(36,192),(38,194),(40,196),(42,198),(44,200),(46,202),(48,204),(50,206),(52,208),(54,210),(56,212),(62,118),(64,120),(66,122),(68,124),(70,126),(72,128),(74,130),(76,132),(78,134),(80,136),(82,138),(84,140),(86,142),(88,144),(90,146),(92,148),(94,150),(96,152),(98,154),(100,156),(102,158),(104,160),(106,162),(108,164),(114,214),(116,216)], [(1,59),(2,60),(3,57),(4,58),(5,112),(6,109),(7,110),(8,111),(9,165),(10,166),(11,167),(12,168),(13,169),(14,170),(15,171),(16,172),(17,173),(18,174),(19,175),(20,176),(21,177),(22,178),(23,179),(24,180),(25,181),(26,182),(27,183),(28,184),(29,185),(30,186),(31,187),(32,188),(33,189),(34,190),(35,191),(36,192),(37,193),(38,194),(39,195),(40,196),(41,197),(42,198),(43,199),(44,200),(45,201),(46,202),(47,203),(48,204),(49,205),(50,206),(51,207),(52,208),(53,209),(54,210),(55,211),(56,212),(61,117),(62,118),(63,119),(64,120),(65,121),(66,122),(67,123),(68,124),(69,125),(70,126),(71,127),(72,128),(73,129),(74,130),(75,131),(76,132),(77,133),(78,134),(79,135),(80,136),(81,137),(82,138),(83,139),(84,140),(85,141),(86,142),(87,143),(88,144),(89,145),(90,146),(91,147),(92,148),(93,149),(94,150),(95,151),(96,152),(97,153),(98,154),(99,155),(100,156),(101,157),(102,158),(103,159),(104,160),(105,161),(106,162),(107,163),(108,164),(113,213),(114,214),(115,215),(116,216)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128),(129,130,131,132),(133,134,135,136),(137,138,139,140),(141,142,143,144),(145,146,147,148),(149,150,151,152),(153,154,155,156),(157,158,159,160),(161,162,163,164),(165,166,167,168),(169,170,171,172),(173,174,175,176),(177,178,179,180),(181,182,183,184),(185,186,187,188),(189,190,191,192),(193,194,195,196),(197,198,199,200),(201,202,203,204),(205,206,207,208),(209,210,211,212),(213,214,215,216)]])
270 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | 2E | 3A | ··· | 3Z | 4A | 4B | 4C | 4D | 6A | ··· | 6BZ | 6CA | ··· | 6DZ | 12A | ··· | 12CZ |
order | 1 | 2 | 2 | 2 | 2 | 2 | 3 | ··· | 3 | 4 | 4 | 4 | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 12 | ··· | 12 |
size | 1 | 1 | 1 | 1 | 2 | 2 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 1 | ··· | 1 | 2 | ··· | 2 | 2 | ··· | 2 |
270 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 |
type | + | + | + | + | ||||||
image | C1 | C2 | C2 | C3 | C4 | C6 | C6 | C12 | D4 | C3×D4 |
kernel | C22⋊C4×C33 | C3×C6×C12 | C63 | C32×C22⋊C4 | C3×C62 | C6×C12 | C2×C62 | C62 | C32×C6 | C3×C6 |
# reps | 1 | 2 | 1 | 26 | 4 | 52 | 26 | 104 | 2 | 52 |
Matrix representation of C22⋊C4×C33 ►in GL5(𝔽13)
3 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 3 | 0 |
0 | 0 | 0 | 0 | 3 |
3 | 0 | 0 | 0 | 0 |
0 | 9 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 1 |
3 | 0 | 0 | 0 | 0 |
0 | 3 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 9 | 0 |
0 | 0 | 0 | 0 | 9 |
12 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 9 | 12 |
1 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 |
0 | 0 | 0 | 9 | 11 |
0 | 0 | 0 | 1 | 4 |
G:=sub<GL(5,GF(13))| [3,0,0,0,0,0,9,0,0,0,0,0,1,0,0,0,0,0,3,0,0,0,0,0,3],[3,0,0,0,0,0,9,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,1],[3,0,0,0,0,0,3,0,0,0,0,0,1,0,0,0,0,0,9,0,0,0,0,0,9],[12,0,0,0,0,0,12,0,0,0,0,0,12,0,0,0,0,0,1,9,0,0,0,0,12],[1,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,12,0,0,0,0,0,12],[1,0,0,0,0,0,12,0,0,0,0,0,8,0,0,0,0,0,9,1,0,0,0,11,4] >;
C22⋊C4×C33 in GAP, Magma, Sage, TeX
C_2^2\rtimes C_4\times C_3^3
% in TeX
G:=Group("C2^2:C4xC3^3");
// GroupNames label
G:=SmallGroup(432,513);
// by ID
G=gap.SmallGroup(432,513);
# by ID
G:=PCGroup([7,-2,-2,-3,-3,-3,-2,-2,1512,1541]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^3=b^3=c^3=d^2=e^2=f^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,f*d*f^-1=d*e=e*d,e*f=f*e>;
// generators/relations